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Abstract: In many business applications, the supply 
schedules, which is determined by the manufacturer’s 
capability, and the distribution schedules, which is 
determined by the logistics partner’s capability, must be 
coordinated to form an integrated schedule with respect to a 
given business objective (e.g., minimizing the total operating 
cost, maximizing the customer satisfaction, etc.). This leads 
to the integrated supply-distribution problem. In this paper, 
we analyze and develop a solution approach for a variation 
of such integrated supply-distribution problems involving 
heterogeneous vessels and many customers. 
 
Keywords: Integrated Supply-Distribution scheduling 
problem, heuristics, heterogeneous vessels 
 
I. Introduction 
 
In today’s industry, manufacturers are outsourcing their 
productions to low cost countries as a competitive advantage 
and then ship back the product to serve the domestic markets. 
This is a significant driver of growth of global containerized 
trade. According to UNCTAD´s Review of Maritime 
Transport 2009 reports [29], despite of global economic 
downturn in 2008, international seaborne trade still grew by 
3.6% and the world total of containerized trade has reached 
to the level of 137 million TEUs (1.3 billion tons), an 
increase of 5.4% over 2007. With the global economy 
recovering, ship container volumes from Asia to Europe 
grew by nearly 10 percent year-on-year in December 2009 
[26]. PIERS Global Intelligence Solutions projected that the 
total U.S. containerized ocean imports will grow 9.1 percent 
in 2010 [19]. The forecast projects containerized imports on 
the Trans-Pacific trade lanes will grow 12.1 percent in 2010. 
According to Xinhua News [28], as the first country 
emerging from the global economic downturn, China's gross 
domestic product (GDP) grew 8.7% in 2009 and the 
projection of growth for 2010 is around 8%. On the other 
hand, however, managing real-life shipping operations to 
timely bring back finished goods within the budget and 
customer expectation has become increasingly challenging. 
A recent report from GCTL [14] indicated that on-time 
container ship arrival rate during the fourth quarter of 2009 
was about 50%. Many business executives are concerned 

that their companies do not have a global procurement, 
manufacturing, and distribution network to deliver products 
on time and at the budgeted cost. The survey also indicates 
that failures in design and execution at the operational level 
will sidetrack global plans every time. Among the 
optimization problems to be solved toward a highly 
integrated and effective supply chain process, one of them is 
the integrated scheduling of supply and distribution 
operations. 
Our study on the integrated supply (production) and 
distribution was motivated by the practice of a primary 
supplier for wood panels used in housing construction. The 
company outsourced its production to low-cost countries in 
Asia and has since been utilizing capacitated ocean vessels to 
ship the products back to North America to serve its regional 
markets. The products are produced in lots based on the 
anticipated demand, and transported from the contracted 
factories to a transshipment location, from where the 
products are then distributed via barges to the domestic 
customer ports to meet the demand. Since the actual demand 
of the customer ports may deviate from the anticipated lot 
sizes, and since vessels have only a limited capacity and 
traveling speed, the coordination between the product 
availability and the distribution operations is critical in order 
to avoid high operating and shortage cost in the supply chain 
process.  
In this study, we hypothesize our optimization problem 
based upon the operations of a segment of this supply chain 
process between a main transshipment port, location 0, and a 
sequence of customer ports along the coast, I=<1, 2,…,|I|>, 
from where the regional markets will be served. The 
transshipment port receives a large shipment, t , from 

foreign factories in period t, and dispatches 

contracted vessels that deliver smaller batches to the 
customer ports. Each customer port, 

,,...,2,1 Tt 

i ,I  has an 
anticipated period demand from its regional market, 

a holding cost  and a penalty cost  for each 

unit of shortage per time period. The contracted vessels are 
heterogeneous and capacitated. Let V be set of vessel types.  
Each vessel of type v,  has a maximum loading 

capacity , an expected traveling time  between ports i 

,0, tid

u

,ih

v

ip

,V
v

ji,v

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010 

206



Chunxing Fan, Lei Lei, Shuguang Liu 

and j,  where  an available operation time },0{,  Iji v  

per period, a fixed cost  per trip, a variable operating cost 

an expected berthing time, and cost, at customer port i, 

denoted by and  respectively, 

f
vc

,0, ivl ,
b

ivc

,0
vc

,0 .Ii   The 

inventory capacity is not considered here. 
 
In addition, we make the following assumptions: 
 
The shortage penalty at customer port i in time period t is 

proportional to  where parameter  

denotes a potential nonlinear relationship between the 
penalty cost and the shortage quantity; 

e
tiS },

t

ip ,0.{max 1

.T

T

e

For some t, we may have  

Whenever there is a shortage at the transshipment port, there 
is a need to balance the limited supplies among the 
competing customer ports; 

1, tt ,d
Ii i  

 
Since the vessels will be traveling along the coastline, for 
any pair of ports i and j, where i<j,  is possible but 

 is not considered in any given trip;  

ji 
ij 

 
Each vessel may take at most one trip/route per period while 
the trip/route may cover more than one customer port; and 
Each customer port can be visited by at most one vessel in a 
time period. 

The problem is to allocate the supplies  ,1 ,...,2  to 

customer ports and to determine the vessel-mix (to be 
contracted from the vessel owner) for each time period to 
transport the deliveries so that the sum of the total shortage 
costs, the vessel (fixed and variable) cost, and the inventory 
holding cost is minimized subject to the vessel capacity, 
traveling time, and the product availability. Let P denote this 
problem. 
If we disregard the product availability and the inventory 
issue in this supply process, then P becomes a classical 
vessel routing problem which has received a significant 
attention in academic research. Among those, Lane et al. [16] 
studied the problem of determining the economical ship size 
and the mix of fleet for a specific route with a known 
demand over a finite planning horizon. Claessens [8] 
introduced a shipping model that minimizes the total costs 
including a penalty cost for cargo not shipped due to capacity 
constraints. Ranna and Vickson [21] [22] studied the vessel 
routing problem to maximize a carrier’s profit.  Perakis and 
Jaramillo [20], and Jaramillo and Perakis [15], considered 
the problem of assigning container vessels to a given set of 
routes under practical operating costs. Cho and Perakis [2] 
proposed a model to find the optimal fleet size and the 
associated liner routes. By generating a priori a number of 
candidate routes for different vessels, the problem was 
solved as a linear program. Fagerholt [9] presented an 

approach to determine the optimal fleet and their weekly 
liner routes. The problem was formulated as a multi-trip 
vehicle routing problem and then solved by a set partitioning 
based approach. Bendall and Stent [1] studied the problem of 
optimizing the fleet configuration and the associated fleet 
deployment plan in a container vessel hub and spoke 
application. A mixed integer program was solved to 
determine the optimal fleet size and the profitability of a 
short-haul hub and spoke feeder operation based in 
Singapore. Sambracos et al. [25] tackled the coastal freight 
shipping problem via two phases: the strategic planning of 
fleet size by solving a linear program and the operations 
scheduling via solving a vehicle-routing problem. Fagerholt 
[11] presented a decision support system, called TurboRouter, 
for vessel scheduling. The scheduling problem was solved by 
the insertion heuristic for an initial feasible solution and then 
a hybrid local search algorithm to improve the quality of the 
initial solution. Chen et al. [3] considered a strongly NP-hard 
container vessel scheduling problem with bi-directional 
flows. They proved that a special case of this problem is 
totally unimodular, and then designed a heuristic vessel 
scheduling algorithm based on this property. Lei et al. [17] 
proposed two-phase approach to solve the integrated 
production, inventory, and distribution routing problem. 
They solve the problem with all constraints but only direct 
shipments in phase I, and then solve the associated 
consolidation problem to handle the potential inefficiency of 
direct shipment. Several interesting studies on vessel 
planning and scheduling can also be found in the work by 
Fagerholt and Lindstad [13], Fagerholt and Christiansen [12], 
Christiansen and Fagerholt [5] [6], Fagerholt [10], and Lei et 
al. [18] etc. Four excellent reviews of the results in this area 
can be found in the work by Ronen [23] [24], Christiansen et 
al. [7], and Chen [4]. 
However, if we add the product availability and inventory 
constraints into consideration, then not many results in the 
current literature are available.  
In this study, we report three fundamental properties of 
problem P, upon which we propose a greedy heuristic search 
algorithm. For each time period in the T-period planning 
horizon, this heuristic solves a minimal cost flow problem to 
form an initial vessel schedule and then improves the initial 
schedule by applying a bin-packing heuristic. After feasible 
vessels schedule for all the time periods are obtained, a linear 
programming problem is solved to form an integrated 
supply-distribution schedule that solves problem P. The 
remaining part of the study is organized as follows. In 
Section 2, a mathematical programming model (formulated 
as a set partitioning problem) that formally defines the 
problem is presented, and an analysis on the problem 
properties is conducted. In Section 3, the proposed greedy 
heuristic search algorithm that solves the integrated supply-
distribution problem is introduced, and a numerical example 
is presented. Finally in Section 4, we conclude the study and 
discuss its future extensions. 
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II. An analysis of the integrated supply and 
distribution problem 
 
To make a formal definition of problem P, let us start with 
the following parameters and variables. 
 
Parameters: 
r The index of a vessel route; 
k(t) The k-th vessel deployed in period t, t=1,2,…,T; 
v(k(t)) The vessel-type of the k-th vessel deployed in 

period t,  ;))(( Vtkv 

)(tkR  The set of feasible routes (i.e., the total traveling 

and berthing time does not violate v ) for the k-

th vessel deployed in period t, t=1, 2, …, T; 
r

tkc )(  The operating cost (traveling and berthing cost) 

of the k-th vessel in period t if route r is taken, 

 ;)(tkRr

irY ,   Binary constant that =1 if customer port i is 

on route r, ; 

irY ,

Ii
maxK  An upper bound on the maximum number of 

vessels to be deployed in each time period, where 

 .||max IK 
 
Variables: 

trtkX ,),(  Binary variables, =1 if vessel  

takes route r in period t;  
trtkX ,),( )(tk

tiS ,         The shortage quantity at port i  in period t; 

titkQ ,),(  The quantity delivered by vessel  to port i 

in period t; 

)(tk

tti II ,0, ,  The ending inventory of port , and the 

transshipment port, in period t. 

i
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s.t.  

1. The flow balance constraints at each port  

 

  (2) 

titititk r titkti ISdQI ,,,)( ,),(1,   

TtIi ,...,2,1, 

 ttk Ii titktt IQI ,0)( ,),(1,0      

 Tt ,...,2,1  (3) 

2.  A vessel may be assigned to at most one route per period 

 1
)( ,),(   tkRr trtkX

,,...,2,1)( maxKtk   t  (4) T,...,2,1

3. Each port can be visited by at most one vessel in a time     
period 

 1,),(,...,2,1)( ,max
)(

   trtkKtk Rr ir XY
tk

 

 TtIi ,...,2,1,   (5) 

4.  Vessel capacity constraints 

   )( ,),(,),( tkRr trtkvi titk XuQ

,,...,2,1)( maxKtk  Tt ,...,2,1   (6) 

5.  Initial inventory 

 00, iI  }0{ Ii  (7) 

6.  Others 

  (8) 
TtIiKtk

XSIIQ trtktitittitk

,,2,1 , ,,,2,1)(

}1,0{  ,0,,,
max

,),(,,,0,),(

 



 
Problem P has several properties. Observations 1, 2, and 3 
below reveal three of these properties. 
 
Observation 1. Problem P is NP-hard in strong sense, even 
with |T|=1, identical vessels, sufficient supplies, and 
instantaneous vessel travel times. 
 
In practice, sometimes the orders from individual customer 
ports are non-splitable in the shipment (i.e., the quantity in 
one order must arrive via the same vessel-trip) and non-
substitutable (i.e., the orders are customized subject to 

manufacturing specifics, and  denotes the total order 

quantity that is expected to arrive on or before time period t 
at port i). Observation 2 below reveals a strongly polynomial 
time solvable case encountered under such conditions. 

tid ,

 

Observation 2. If |I|=1, ,1 p ,
,...,2,11  


Tt td  

0 t  for all ,  and the orders are non-1t 00h
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substitutable and non-splitable, then problem P, even with 
heterogeneous vessels, is strongly polynomial time solvable. 
 
This result is generalized from Lei et al. (2006) where the 
case with identical vessels was considered. 
 

Observation 3. If T=1, ,  


Ii id1  00 h , 

, and each vessel may serve at 

most two customer ports per period, then P is solvable in 
strongly polynomial time. 

b
v

v
iv

f
vii cccdp  ,0

02 

 
This result is generalized from Lei et al. (2007) where the 
vessel traveling factor was excluded. 
Note that the optimality of the minimal cost flow in 
Observation 3 is no longer guaranteed when the fleet size 
becomes a bottleneck. That is, if the number of vessels being 
deployed by the minimal cost flow solution exceeds the fleet 
size, then, the problem of reallocating the ports to fit the fleet 
size becomes NP-hard. On the other hand, if each vessel can 
visit/serve more than two ports, then the optimality of the 
minimal cost flow in Observation 3 is not guaranteed either, 
and the vessel utilization needs to be improved. In this case, 
the available heuristics, such the first-fit decreasing (FFD) 
heuristic, for the bin-packing problem can be applied. 
Among FFD related studies, Yue [29] provided a simple 
proof that FFD runs in O(n2) time and for every instance L of 
bin-packing provides the solution performance of 

1)()9/11()(  LOPTLFFD . However, due to the 

heterogeneity of the vessels (i.e., heterogeneous bins), such a 
heuristic must be extended before it can be applied to our 
case. Table 1 outlines an extended FFD heuristic. 
 

Table 1 The Extended FFD Heuristic 
 

The Extended FFD (EFFD) Heuristic 
Step 1.  Solve the single period minimal cost flow problem 

(Observation 3). Let K be the number of vessels 
being deployed in the minimal cost flow solution. 

Step 2.  For the k-th vessel, k=1,2,…,K, with its given route 

, compute the saving factor by using 

 (9) 

and form a non-increasing sequence 

kr

k f
kviri i cdp

k
)(  

1,|,...,1 1 . K jj Kj  Let 

k=K. 
Step 3.  (Given   and index k) Remove vessel k from   

and apply the classical FFD heuristic to assign the 

customer ports to the remaining vessels 

(bins) in

,, krii 
 . If success, then permanently delete 

vessel k from . Let 1 kk  and repeat Step 3 
until none of the vessels in the current sequence   
can be deleted.   

 
Applying the minimal cost flow algorithm and then 
improving the vessel utilization by EFFD determine an 
independent vessel schedule for a single time period 
assuming that we have sufficient supplies at the 
transshipment port and that we do not have to be concerned 
with the inventory. To build a complete solution to the 
integrated supply-distribution problem, P, however, it is 
necessary for us to combine the T vessel schedules together 

by considering the supply capacity ),...,,( 21 T
Iii

 and 

the inventories carried at each customer port , . In 

next section, we shall address this issue. 
 
III. A greedy solution for Problem P 
 
The greedy solution that we propose for solving problem P 
calls the minimal cost flow algorithm and the EFFD heuristic 
to form the vessel schedule for each time period t, t=1,2,…,T. 

Let ,),(},1,0{,),( IitkZ titk  be binary variables that 

=1 if the k-th vessel in period t, k(t), visits customer 

port i in period t. Then, the values of , 

tit ,),(

,,),( tIitk

kZ

titkZ ,),(

  become known as EFFD terminates. 

Since the search process for the vessel assignment does not 
consider the inventory issue, one remaining problem is how 

to connect the T independent vessel schedules , 

one for each time period t, t=1,2,…,T, through inventory 
planning. To do so, let K(t), and I(t), be the set of vessels 
being dispatched, and the set of customer ports being visited, 
in period t, t=1,2,….,T, respectively, where 

}{ ,),( titkZ

)()()( tKtkandtIi   if and only if =1. Let t,itkZ ),(

 

tiS ,  be the shortage quantity at port i  in time period t , 

titkQ ,),(   be the quantity delivered by vessel k(t) to port i  in 

period t, where , and )()( tKtk 
  be the ending inventory of port i  in period t. tiI ,

 
Then, the respective inventory planning problem can be 
defined as follows. 
 

PL: ],}0{ ,[. tit Ii Ii itii SpIhMin       (10) 

 
s.t.  

,,,,)()( ,),(1, titititKtk titkti ISdQI  

TttIiI i ,...2,1),(,00,

  

  (11) 
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ttKtk tIi titktt IQI ,0)()( )( ,),(1,0    

00,0 I Tt ,...,2,1

,

   (12)  

 

TttIi

tKtkuQ tki titk

,...,2,1),(

),()(,)(,),(



  (13) 

 

TttKtktIi

ISIQ ttitititk

,...,2,1),()(),(

,0,,, ,0,,,),(
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
 (14)  

 
Since PL is a linear programming problem, it can be solved 
quickly via CPLEX. The resulting solution together with the 
vessel schedules discussed in Section 2 defines a feasible 
heuristic solution to problem P. This is outlined in Table 2. 
 

Table 2 A greedy search algorithm for solving P 
 

A greedy search algorithm for solving P 

Step 1. (Initialization) Let Ii,0=0,  };0{ Ii
Step 2. For each time period t, t=1,2,…,T, apply the Minimal 

Cost Flow Algorithm and the EFFD heuristic to 
obtain the vessel schedule: 

  )}(),()(,{ ,),( tIitKtkZ titk 
Step 3. Based upon the given K(t), I(t), for t=1,2,…,T, solve 

the respective linear programming problem PL to 

obtain and  Compute 

the total operating cost (1).  

,,, ,,,),( titititk SIQ .,0 tI

 
 

To demonstrate the use of this greedy search algorithm, we 
solve an integrated supply-distribution problem by 
considering a distribution network with the New York port 
(0-Supply) as the transshipment port, and five customer ports: 
Philadelphia (P-1), Norfolk (P-2), Wilmington (P-3), 
Charleston (P-4), and Savannah (P-5). The distance between 
ports (Nautical Miles) are from The Office of Coast Survey, 
National Ocean Service (NOS) and the traveling time 
between ports (hours) are calculated based on the average 
vessel speed 15 knots/hour. The other related data are given 
in Table 3 and Table 4. The total operation cost obtained 
from our proposed algorithm is $1,650,200. We have also 
solved the original problem P by using CPLEX Optimizer 
9.0 on a Dell LATITUDE D600 (Pentium(R) M, 1.4GHz, 
1.00GB of RAM). The optimal schedule was obtained after 
6899.16 seconds with a total cost of $1,596,200. The gap 
between the optimal solution and that obtained by the 
proposed greedy search algorithm for this case is 3.38%.  
 

Table 3: Vessel related data 
VT FCT  VC CAP AT BT BC) 
A 100000 1200 1500 90 5 10000 

B 120000 1500 2500 180 7 12000 
VT-Vessel Type; FCT-Fixed cost per travel ($); VC-Variable cost ($/hour); CAP-Capacity (TEUs); 
AT-Available time (hours); BT-Berthing time (hours); BC-Berthing cost ($/port) 

 
Table 4: Port supply, demand, holding and penalty cost 

 0-Supply P-1 P-2 P-3 P-4 P-5 
Period 1 4000 620 830 750 1100 600 
Period 2 2500 410 320 540 610 520 
Period 3 5300 1300 1800 550 800 900 
HC 200 300 300 300 300 300 
PC - 1000 1000 1000 1000 1000 
HC-holding cost; PC-penalty cost. 

 
IV. Concluding Remarks 
 
In this study, we focused on a variation of the integrated 
supply-distribution problem involving heterogeneous vessels, 
multiple customer ports, multiple time periods, the product 
availability, and the capacitated inventories. We reported and 
proved three observations on the properties of the problem 
and proposed a greedy heuristic search algorithm to solve it. 
We also demonstrated the use of the proposed heuristic 
search algorithm to solve a problem involving some real 
industry data. While the study focused on only a sub-
problem of the collaborative planning and scheduling, it has 
potentials to be applied as an efficient decision support tool 
to assist the development of distribution plan in practice. The 
results reported in this study can also be used for developing 
the search algorithm for solving the general version of the 
integrated supply-distribution problem, where 
manufacturer’s capacity is included. 
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